首页> 外文OA文献 >Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries
【2h】

Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries

机译:在中低收入国家,两种计算机编码的口头尸检方法对死亡原因的诊断性能与医师对24,000例死亡的编码相比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: Physician-coded verbal autopsy (PCVA) is the most widely used method to determine causes of death (CODs) in countries where medical certification of death is uncommon. Computer-coded verbal autopsy (CCVA) methods have been proposed as a faster and cheaper alternative to PCVA, though they have not been widely compared to PCVA or to each other. METHODS: We compared the performance of open-source random forest, open-source tariff method, InterVA-4, and the King-Lu method to PCVA on five datasets comprising over 24,000 verbal autopsies from low- and middle-income countries. Metrics to assess performance were positive predictive value and partial chance-corrected concordance at the individual level, and cause-specific mortality fraction accuracy and cause-specific mortality fraction error at the population level. RESULTS: The positive predictive value for the most probable COD predicted by the four CCVA methods averaged about 43% to 44% across the datasets. The average positive predictive value improved for the top three most probable CODs, with greater improvements for open-source random forest (69%) and open-source tariff method (68%) than for InterVA-4 (62%). The average partial chance-corrected concordance for the most probable COD predicted by the open-source random forest, open-source tariff method and InterVA-4 were 41%, 40% and 41%, respectively, with better results for the top three most probable CODs. Performance generally improved with larger datasets. At the population level, the King-Lu method had the highest average cause-specific mortality fraction accuracy across all five datasets (91%), followed by InterVA-4 (72% across three datasets), open-source random forest (71%) and open-source tariff method (54%). CONCLUSIONS: On an individual level, no single method was able to replicate the physician assignment of COD more than about half the time. At the population level, the King-Lu method was the best method to estimate cause-specific mortality fractions, though it does not assign individual CODs. Future testing should focus on combining different computer-coded verbal autopsy tools, paired with PCVA strengths. This includes using open-source tools applied to larger and varied datasets (especially those including a random sample of deaths drawn from the population), so as to establish the performance for age- and sex-specific CODs.
机译:背景:医师编码的语言尸检(PCVA)是在死亡医疗证明不常见的国家中确定死亡原因(COD)的最广泛使用的方法。尽管没有广泛地与PCVA或彼此相比,但计算机编码的语言尸检(CCVA)方法已被提议作为PCVA的一种更快,更便宜的替代方法。方法:我们在来自中低收入国家的超过24,000个口头尸检的五个数据集上比较了开放源代码随机森林,开放源代码关税方法,InterVA-4和King-Lu方法与PCVA的性能。评估绩效的指标是个体水平上的阳性预测值和部分机会校正的一致性,以及人群水平上特定原因的死亡率分数准确性和特定原因的死亡率分数误差。结果:四种CCVA方法预测的最可能COD的阳性预测值在整个数据集中平均约为43%至44%。前三个最可能的COD的平均阳性预测值有所提高,与InterVA-4(62%)相比,开源随机森林(69%)和开源费率法(68%)的改进更大。开源随机森林,开源关税方法和InterVA-4预测的最可能COD的平均部分机会校正后的一致性分别为41%,40%和41%,对于前三名中最出色的结果可能的COD。较大的数据集通常可以提高性能。在人口一级,King-Lu方法在所有五个数据集中的平均因因死亡率分数准确性最高(91%),其次是InterVA-4(三个数据集的72%),开源随机森林(71%) )和开源收费方法(54%)。结论:就个人而言,没有任何一种方法能够复制医师分配的COD的时间超过一半。在人口一级,尽管未指定单个的COD,但King-Lu方法是估计特定原因死亡率的最佳方法。未来的测试应重点结合PCVA的优势,结合使用不同的计算机编码语言尸检工具。这包括使用适用于更大和不同数据集的开源工具(尤其是那些包含从人口中随机抽取的死亡样本的数据集),以便确定针对特定年龄和性别的COD的性能。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号